Bayesian Learning of Sparse Gaussian Graphical Models

نویسندگان

  • Minhua Chen
  • Hao Wang
  • Xuejun Liao
چکیده

Sparse inverse covariance matrix modeling is an important tool for learning relationships among different variables in a Gaussian graph. Most existing algorithms are based on `1 regularization, with the regularization parameters tuned via cross-validation. In this paper, a Bayesian formulation of the problem is proposed, where the regularization parameters are inferred adaptively and cross-validation is avoided. Variational Bayes (VB) is used for the model inference. Results on simulated and real datasets validate the proposed approach. In addition, a graph extension algorithm is proposed to include a new variable in an existing graph, which can be used when separate testing data are available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian structure learning in graphical models

We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, including the case where the dimension p exceeds the sample size n. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of the edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure i...

متن کامل

Learning Brain fMRI Structure Through Sparseness and Local Constancy

1 Objective We propose sparse and locally constant Gaussian graphical models as well as structural equation models for learning the functional connectivity in the whole-brain. fMRI datasets are typically under-sampled and high-dimensional, they often need to be represented with low-complexity statistical models, which are comprised of only the important probabilistic dependencies. Most methods ...

متن کامل

Bayesian estimation of a sparse precision matrix

We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, including the case where the dimension p is large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of the edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the gr...

متن کامل

Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing

We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We d...

متن کامل

Learning Gaussian Graphical Models With Fractional Marginal Pseudo-likelihood

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing methods for learning Gaussian graphical models are either re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011